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ABSTRACT

Note onset detection is one of the most investigated tasks
in Music Information Retrieval (MIR) and various detec-
tion methods have been proposed in previous research. The
primary aim of this paper is to investigate different fusion
policies to combine existing onset detectors, thus achiev-
ing better results. Existing algorithms are fused using three
strategies, first by combining different algorithms, second,
by using the linear combination of detection functions, and
third, by using a late decision fusion approach. Large scale
evaluation was carried out on two published datasets and a
new percussion database composed of Chinese traditional
instrument samples. An exhaustive search through the pa-
rameter space was used enabling a systematic analysis of
the impact of each parameter, as well as reporting the most
generally applicable parameter settings for the onset de-
tectors and the fusion. We demonstrate improved results
attributed to both fusion and the optimised parameter set-
tings.

1. INTRODUCTION

The automatic detection of onset events is an essential part
in many music signal analysis schemes and has various ap-
plications in content-based music processing. Different ap-
proaches have been investigated for onset detection in re-
cent years [1,2]. As the main contribution of this paper, we
present new onset detectors using different fusion policies,
with improved detection rates relying on recent research in
the MIR community. We also investigate different config-
urations of onset detection and fusion parameters, aiming
to provide a reference for configuring onset detection sys-
tems.

The focus of ongoing onset detection work is typically
targeting Western musical instruments. Apart from using
two published datasets, a new database is incorporated into
our evaluation, collecting percussion ensembles of Jingju,
also denoted as Peking Opera or Beijing Opera, a major
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genre of Chinese traditional music 1 . By including this
dataset, we aim at increasing the diversity of instrument
categories in the evaluation of onset detectors, as well as
extending the research to include non-Western music types.

The goal of this paper can be summarised as follows: i)
to evaluate fusion methods in comparison with the baseline
algorithms, as well as a state-of-the-art method 2 ; ii) to in-
vestigate which fusion policies and which pair-wise com-
binations of onset detectors yield the most improvement
over standard techniques; iii) to find the best performing
configurations by searching through the multi-dimensional
parameter space, hence identifying emerging patterns in
the performances of different parameter settings, showing
good results across different datasets; iv) to investigate the
performance difference in Western and non-Western per-
cussive instrument datasets.

In the next section, we present a review of related work.
Descriptions of the datasets used in this experiment are
given in Section 3. In Section 4, we introduce different fu-
sion strategies. Relevant post-processing and peak-picking
procedures, as well as the parameter search process will
be discussed in Section 5. Section 6 presents the results,
with a detailed analysis and discussion of the performance
of the fusion methods. Finally, the last section summarises
our findings and provides directions for future work.

2. RELATED WORK

Many onset detection algorithms and systems have been
proposed in recent years. Common approaches using en-
ergy or phase information derived from the input signal in-
clude the high frequency content (HFC) and complex do-
main (CD) methods. See [1,6] for detailed reviews and [9]
for further improvements. Pitch contours and harmonic-
ity information can also be indicators for onset events [7].
These methods shows some superiority over energy based
ones in case of soft onsets.

Onset detection systems using machine learning tech-
niques have also been gaining popularity in recent years 3 .
The winner of MIREX 2013 audio onset detection task
utilises convolutional neural networks to classify and dis-
tinguish onsets from non-onset events in the spectrogram
[13]. The data-driven nature of these methods makes the

1 http://en.wikipedia.org/wiki/Peking_opera
2 Machine learning-based methods are excluded from this study to

limit the scope of our work.
3 http://www.music-ir.org/mirex/wiki/2013:
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detection less dependent on onset types, though a computa-
tionally expensive training process is required. A promis-
ing approach for onset detection lies in the fusion of multi-
ple detection methods. Zhou et al. proposed a system inte-
grating two detection methods selected according to prop-
erties of the target onsets [17]. In [10], pitch, energy and
phase information are considered in parallel for the detec-
tion of pitched onsets. Another fusion strategy is to com-
bine peak score information to form new estimations of
the onset events [8]. Albeit fusion has been used in previ-
ous work, there is a lack of systematic evaluation of fusion
strategies and applications in the current literature. This
paper focusses on the assessment of different fusion poli-
cies, from feature-level and detection function-level fusion
to higher level decision fusion.

The success of an onset detection algorithm largely de-
pends on the signal processing methods used to extract
salient features from the audio that emphasise the features
characterising onset events as well as smoothing the noise
in the detection function. Various signal processing tech-
niques have been introduced in recent studies, such as vi-
brato suppression [3] and adaptive thresholding [1]. In
[14], adaptive whitening is presented where each STFT
bins magnitude is divided by the an average peak for that
bin accumulated over time. This paper also investigates
the performances of some commonly used signal process-
ing modules within onset detection systems.

3. DATASETS

In this study, we use two previously released evaluation
datasets and a newly created one. The first published dataset
comes from [1], containing 23 audio tracks with a total du-
ration of 190 seconds and having 1058 onsets. These are
classified into four groups: pitched non-percussive (PNP),
e.g. bowed strings, 93 onsets, pitched percussive (PP), e.g.
piano, 482 onsets 4 , non-pitched percussive (NPP), e.g.
drums, 212 onsets, and complex mixtures (CM), e.g. pop
singing music, 271 onsets. The second set comes from [2]
which is composed of 30 samples 5 of 10 second audio
tracks, containing 1559 onsets in total, covering also four
categories: PNP (233 onsets in total), PP (152 onsets), NPP
(115 onsets), CM (1059 onsets). The use of these datasets
enables us to test the algorithms on a range of different in-
struments and onset types, and provides for direct compar-
ison with published work. The combined dataset used in
the evaluation of our work is composed of these two sets.

The third dataset consists of recordings of the four ma-
jor percussion instruments in Jingju: bangu (clapper- drum),
daluo (gong-1), naobo (cymbals), and xiaoluo (gong-2).
The samples are manually mixed using individual record-
ings of these instruments with possibly simultaneous on-
sets to closely reproduce real world conditions. See [15]
for more details on the instrument types and the dataset.
This dataset includes 10 samples of 30-second excerpts

4 A 7-onset discrepancy(482 instead of 489) from the reference paper
is reported by the original author due to revisions of annotations.

5 Only a subset of this dataset presented in the original paper is re-
ceived from the author for the evaluation in this paper.

with 732 onsets. We also use NPP onsets from the first two
datasets to form the fourth one, providing a direct com-
parison with the Chinese NPP instruments. All stimuli are
mono signals sampled at 44.1kHz 6 and 16 bits per sample,
having 3349 onsets in total.

4. FUSION EXPERIMENT

The aim of information fusion is to merge information from
heterogeneous sources to reduce uncertainty of inferences
[11]. In our study, six spectral-based onset detection al-
gorithms are considered as baselines for fusion: high fre-
quency content (HFC), spectral difference (SD) complex
domain (CD), broadband energy rise (BER), phase devia-
tion (PD), outlined in [1], and SuperFlux (SF) from recent
work [4]. We also developed and included in the fusion a
method based on Linear Predictive Coding [12], where the
LPC coefficients are computed using the Levinson-Durbin
recursion, and the onset detection function is derived from
the LPC error signal.

Three fusion policies are used in our experiments: i)
feature-level fusion, ii) fusion using the linear combination
of detection functions and iii) decision fusion by selecting
and merging onset candidates. All pairwise combination
of the baseline algorithms are amenable for the latter two
fusion policies. However, not all algorithms can be mean-
ingfully combined using feature-level fusion. For example
CD can be considered as an existing combination of SD
and PD, therefore combining CD with either of these two
at a feature level is not sensible. In this study, 10 feature-
level fusion, 13 linear combination based fusion and 15
decision fusion based methods are tested. These are com-
pared to the 7 original methods, giving us 45 detectors in
total. In the following, we describe specific fusion policies.
We assume familiarity with onset detection principles and
restrain from describing these details, please see [1] for a
tutorial.

4.1 Feature-level Fusion

In feature-level fusion, multiple algorithms are combined
to compute fused features. For conciseness, we provide
only one example combining BER and SF, denoted BERSF,
utilising the vibrato suppression capability of SF [4] for de-
tecting soft onsets, as well as the good performance of BER
for detecting percussive onsets with sharp energy bursts
[1]. Here, we use the BER to mask the SF detection func-
tion as described by Equation (1). In essence, SF is used
directly when there is evidence for a sharp energy rise, oth-
erwise it is further smoothed using a median filter.

ODF (n) =

{
SF (n) if BER(n) > γ

λ(SF (n)) otherwise,
(1)

where γ is an experimentally defined threshold, λ is a weight-
ing constant set to 0.9 and SF (n) is the median filtered
detection function with a window size of 3 frames.

6 Some audio files were upsampled to obtain a uniform dataset.



4.2 Linear Combination of Detection Functions

In this method, two time aligned detection functions are
used and their weighted linear combination is computed to
form a new detection function as shown in Equation 2:

ODF (n) = wODF1(n) + (1− w)ODF2(n), (2)

whereODF1 andODF2 are two normalised detection func-
tions and w is a weighting coefficient (0 ≤ w ≤ 1).

4.3 Decision Fusion

This fusion method operates at a later stage and combines
prior decisions of two detectors. Post-processing and peak
picking are applied separately yielding two lists of onset
candidates. Onsets from the two lists occurring within a
fixed temporal tolerance window will be merged and ac-
cepted. Let TS1 and TS2 be the lists of onset locations
given by two different detectors, i and j be indexes of on-
sets in the candidate lists and δ the tolerance time window.
The final onset locations are generated using the fusion
strategy described by Algorithm 1.

Algorithm 1 Onset decision fusion
1: procedure DECISIONFUSION(TS1, TS2)
2: I, J ← 0 : len(TS1)− 1, 0 : len(TS2)− 1
3: TS ← empty list
4: for all i, j in product(I, J) do
5: if abs(TS1[i]− TS2[j]) < δ then
6: insert sorted: TS ← mean(TS1[i], TS2[j])

7: return TS

5. PEAK PICKING AND PARAMETER SEARCH

5.1 Smoothing and Thresholding

Post-processing is an optional stage to reduce noise that in-
terferes with the selection of maxima in the detection func-
tion. In this study, three post-processing blocks are used: i)
DC removal and normalisation, ii) zero-phase low-pass fil-
tering and iii) adaptive thresholding. In conventional nor-
malisation, data is scaled using a fixed constant. Here we
use a normalisation coefficient computed by weighting the
input exponentially. After removing constant offsets, the
detection function is normalised using the coefficient Al-
phaNorm calculated by Equation (3):

AlphaNorm =

(∑
n |ODF (n)|α

len(ODF )

) 1
α

(3)

A low-pass filter is applied to the detection function to
reduce noise. To avoid introducing delays, a zero phase fil-
ter is employed at this stage. Finally, adaptive thresholding
using a moving median filter is applied following Bello [1],
to avoid the common pitfalls of using a fixed threshold for
peak picking.

5.2 Peak Picking

5.2.1 Polynomial Fitting

The use of polynomial fitting allows for assessing the shape
and magnitude of peaks separately. Here we fit a second-

degree polynomial on the detection function around local
maxima using a least squares method, following the QM
Vamp Plugins 7 . The coefficients a and c of the quadratic
equation y = ax2 + bx+ c are used to detect both sharper
peaks, under the condition a > tha, and peaks with a
higher magnitude, when c > thc. The corresponding thresh-
olds are computed from a single sensitivity parameter called
threshold using tha = (100 − threshold)/1000 for the
quadratic term and thc = (100− threshold)/1500 for the
constant term. The linear term b can be ignored.

5.2.2 Backtracking

In case of many musical instruments, onsets have longer
transients without a sharp burst of energy rise. This may
cause energy based detection functions to exhibit peaks
after the perceived onset locations. Vos and Rasch con-
clude that onsets are perceived when the envelope reaches
a level of roughly 6-15 dB below the maximum level of
the tones [16]. Using this rationale, we trace the onset lo-
cations from the detected peak position back to a hypoth-
esised earlier “perceived” location. The backtracking pro-
cedure is based on measuring relative differences in the
detection function, as illustrated by Algorithm 2, where θ
is the threshold used as a stopping condition. We use the
implementation available in the QM Vamp Plugins.

Algorithm 2 Backtracking
Require: idx: index of a peak location in the ODF

1: procedure BACKTRACKING(idx,ODF, θ)
2: δ, γ ← 0
3: while idx > 1 do
4: δ ← ODF [idx]−ODF [idx− 1]
5: if δ < γ ∗ θ then
6: break
7: idx← idx− 1
8: γ ← δ

9: return idx

5.3 Parameter Search

An exhaustive search is carried out to find the configu-
rations in the parameter space yielding the best detection
rates. The following parameters and settings, related to the
onset detection and fusion stages, are evaluated: i) adaptive
whitening (wht) on/off; ii) detection sensitivity (thresh-
old), ranging from 0.1 to 1.0 with an increment of 0.1; iii)
backtracking threshold (θ), ranging from 0.4 to 2.4 with 8
equal subdivisions (the upper bound is set to an empirical
value 2.4 in the experiment since the tracking will not go
beyond the previous valley); iv) linear combination coeffi-
cient (w), ranging from 0.0 to 1.0 with an increment of 0.1;
v) tolerance window length (δ) for decision fusion, rang-
ing from 0.01 to 0.05 (in second) having 8 subdivisions.
This gives a 5-dimensional space and all combinations of
all possible values described above are evaluated. This re-
sults in 180 configurations in case of standard detectors
and feature-level fusion, 1980 in case of linear fusion and
1620 for decision fusion. The configurations are described

7 http://www.vamp-plugins.org



using the Vamp Plugin Ontology 8 and the resulting RDF
files are used by Sonic Annotator [5] to configure the de-
tectors. The test result will thus give us not only the overall
performance of each onset detector, but also uncover their
strengths and limitations across different datasets and pa-
rameter settings.

6. EVALUATION AND RESULTS

6.1 Analysis of Overall Performance

Figure 1 provides an overview of the results, showing the
F-measure for the top 12 detectors in our study 9 . Detec-
tors are ranked by the median showing the overall perfor-
mance increase due to fusion across the entire range of pa-
rameter settings. Due to space limitations, only a subset of
the results are reported in this paper. The complete result
set for all tested detectors under all configurations on dif-
ferent datasets is available online 10 , together with Vamp
plugins of all tested onset detectors. The names of the fu-
sion algorithms come from the abbreviations of the con-
stituent methods, while the numbers represent the fusion
policy: 0: feature-level fusion, 1: linear combination of
detection functions and 2: decision fusion.

CDSF-1 yields improved F-measure for the combined
dataset by 3.06% and 6.14% compared to the two origi-
nal methods SF and CD respectively. Smaller interquartile
ranges (IQRs) observed in case of CD, SD and HFC based
methods show they have less dependency on the configu-
ration. BERSF-2 and BERSF-1 vary the most in perfor-
mance, also reflected from their IQRs. In case of BERSF-
2, the best performance is obtained using the widest con-
sidered tolerance window (0.05s), with modest sensitivity
(40%). However, decreasing the tolerance window size has
an adverse effect on the performance, yielding one of the
lowest detection rates caused by the significant drop of re-
call. In case of BERSF-1, a big discrepancy between the
best and worst performing configurations can be observed.
This is partly because the highest sensitivity setting has a
negative effect on SF causing very low precision.

Table 1 shows the results ranked by F-measure, preci-
sion and recall with corresponding standard deviations for
the ten best detectors as well as all baseline methods. Stan-
dard deviations are computed over the results for all config-
urations in each dataset. SF is ranked in the best perform-
ing ten, thus it is excluded from the baseline. Nine out of
the top ten detectors are fusion methods. CDSF-1 performs
the best for all datasets (including CHN-NPP and WES-
NPP that are not listed in the table) while BERSF yields
the second best performance in the combined, WES-NPP
and JPB datasets. Corresponding parameter settings for the
combined dataset are given in Table 2.

Fusion policies may perform differently in the evalu-
ation. In case of feature-level fusion, we compared how
combined methods score relative to their constituents. The

8 http://www.omras2.org/VampOntology
9 Due to different post-processing stages, the results reported here may

diverge from previously published results.
10 http://isophonics.net/onset-fusion
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Figure 1. F-meaure of all configurations for the top 12
detectors. (Min, first and third quartile and max value of
the data are represented by the bottom bar of the whiskers,
bottom and upper borders of the boxes and upper bar of the
whiskers respectively. Median is shown by the red line)

method threshold θ wht w δ (s)
CDSF-1 10.0 2.15 off 0.20 n/a
BERSF-1 10.0 2.40 off 0.30 n/a
BERSF-2 40.0 2.15 off n/a 0.05
BERSF-0 30.0 2.40 off n/a n/a
CDSF-2 50.0 2.40 off n/a 0.05
SF 20.0 2.40 off n/a n/a
CDBER-1 10.0 2.40 off 0.50 n/a
BERSD-1 10.0 2.40 off 0.60 n/a
HFCCD-1 20.0 1.15 off 0.50 n/a
CDBER-2 50.0 1.15 off n/a 0.05
mean 25.90 2.100 - 0.4200 0.05
std 15.01 0.4848 - 0.1470 0.00
median 20.0 2.15 - 0.50 0.05
mode 10.0 2.40 off 0.50 0.05

Table 2. Parameter settings for the ten best performing de-
tectors, threshold: overall detection sensitivity; θ: back-
tracking threshold; wht: adaptive whitening; w: linear
combination coefficient; δ: tolerance window size.

performances vary between datasets, with only HFCBER-
0 outperforming both HFC and BER on the combined and
SB datasets in terms of mean F-measure. However, five
perform better than their two constitutes on JPB, two on
CHN-NPP and five on WES-NPP dataset (these results are
published online). A more detailed analysis of these per-
formance differences constitutes future work.

When comparing linear fusion of detection functions
with decision fusion, the former performs better across all
datasets in all but one cases, the fusion of HFC and BER.
Even in this case, linear fusion yields close performance
in terms of mean F-measure. Interesting observations also
emerge for particular methods on certain datasets. The lin-
ear fusion based detectors involving LPC and PD (SDPD-
1 and LPCPD-1) show better performances in the case of
the CHN-NPP dataset compared to their performances on
other datasets as well those given by their constituent meth-
ods (please see table online). Further analysis, for instance,
by looking at statistical significance of these observations
is required to identify relevant instrument properties.

When comparing BERSF-2, CDSF-2 and CDBER-2 to
the other detectors in Table 1, notably higher standard de-
viations in recall and F-measure are shown, indicating this



method F (combined) P (combined) R (combined) F (sb) P (sb) R (sb) F (jpb) P (jpb) R (jpb)
CDSF-1 0.8580 0.0613 0.9054 0.1195 0.8153 0.0609 0.8194 0.0598 0.8455 0.1165 0.7949 0.0681 0.9286 0.0649 0.9748 0.1241 0.8865 0.0525
BERSF-1 0.8559 0.0941 0.8857 0.1363 0.8280 0.0866 0.8126 0.0961 0.8191 0.1306 0.8062 0.0988 0.9283 0.0925 0.9718 0.1463 0.8885 0.0710

BERSF-2 0.8528 0.1684 0.8901 0.1411 0.8186 0.2028 0.8088 0.1677 0.8729 0.1470 0.7536 0.2055 0.9230 0.1724 0.9637 0.1310 0.8856 0.2011

BERSF-0 0.8451 0.0722 0.8638 0.1200 0.8272 0.0701 0.8025 0.0723 0.8185 0.1134 0.7870 0.0744 0.9175 0.0747 0.9712 0.1322 0.8694 0.0658

CDSF-2 0.8392 0.1537 0.8970 0.1129 0.7884 0.1855 0.7892 0.1758 0.8336 0.1251 0.7493 0.2014 0.9165 0.1344 0.9642 0.1001 0.8732 0.1690

SF 0.8274 0.0719 0.8313 0.1209 0.8234 0.0657 0.8126 0.0744 0.8191 0.1241 0.8063 0.0737 0.8488 0.0704 0.8290 0.1177 0.8694 0.0558

CDBER-1 0.8145 0.0809 0.8210 0.1276 0.8080 0.0792 0.7877 0.0829 0.7972 0.1295 0.7785 0.0893 0.8560 0.0793 0.8678 0.1253 0.8446 0.0667

BERSD-1 0.8073 0.0792 0.8163 0.1311 0.7986 0.0812 0.7843 0.0828 0.7985 0.1358 0.7707 0.0915 0.8420 0.0756 0.8310 0.1252 0.8532 0.0685

HFCCD-1 0.8032 0.0472 0.8512 0.1179 0.7603 0.0734 0.7802 0.0448 0.8387 0.1239 0.7293 0.0765 0.8416 0.0511 0.8376 0.1101 0.8456 0.0705

CDBER-2 0.7967 0.2231 0.8423 0.1404 0.7558 0.2398 0.7605 0.2279 0.8140 0.1607 0.7138 0.2384 0.8498 0.2291 0.8853 0.1273 0.8170 0.2494

CD 0.7966 0.0492 0.8509 0.1164 0.7489 0.0672 0.7692 0.0467 0.8361 0.1191 0.7123 0.0709 0.8320 0.0535 0.8692 0.1128 0.7979 0.0636

BER 0.7883 0.0942 0.7776 0.1184 0.7994 0.1001 0.7626 0.0974 0.7521 0.1166 0.7138 0.1119 0.8254 0.0920 0.7968 0.1226 0.8561 0.0851

SD 0.7795 0.0466 0.8354 0.1269 0.7305 0.0733 0.7604 0.0450 0.8311 0.1326 0.7009 0.0785 0.8210 0.0491 0.8202 0.1190 0.8217 0.0676

HFC 0.7712 0.0412 0.8011 0.1225 0.7436 0.0898 0.7411 0.0375 0.7818 0.1291 0.7044 0.0844 0.8159 0.0496 0.8082 0.1138 0.8236 0.1002

LPC 0.7496 0.0658 0.7671 0.1103 0.7330 0.1061 0.7243 0.0657 0.7494 0.1069 0.7009 0.1019 0.7913 0.0662 0.8041 0.1164 0.7788 0.1118

PD 0.6537 0.1084 0.5775 0.1008 0.7530 0.2235 0.6143 0.1093 0.5230 0.0688 0.7308 0.2302 0.7114 0.1115 0.6513 0.1536 0.7836 0.2158

Table 1. F-measure (F), Precision (P) and Recall (R) for dataset combined, SB, JPB for detectors under best performing
configurations from the parameter search, with corresponding standard deviations over different configurations.

statistic Combined SB JPB CHN-NPP WES-NPP
mean 0.7731 0.7438 0.8183 0.8527 0.8358
std 0.0587 0.0579 0.0628 0.1206 0.0641
median 0.7818 0.7595 0.8226 0.8956 0.8580

Table 3. Statistics for F-measure of the ten detectors with
their best performances from Table 1 for different datasets

fusion policy is more sensitive to the choice of parameters.
A possible improvement in this fusion policy would be to
make the size of the tolerance window dependent on the
magnitude of relevant peaks of the detection functions.

The results also vary across different datasets. Table 3
summarises F-measure statistics computed over the detec-
tors listed in Table 1 at their best setting for each datasets
used in this paper. In comparison with SB, the JPB dataset
exhibits higher F-measure. This dataset has larger diversity
in terms of the length of tracks and the level of complex-
ity, while the SB dataset mainly consists of complex mix-
ture (CM) onsets type. Both the Chinese and Western NPP
onset class provides noticeably higher detection rate com-
pared to the mix-typed datasets. Though the CHN-NPP set
shows the largest standard deviation, suggesting a greater
variation in performance between the different detectors
for these instruments. Apart from aiming at optimal over-
all detection results, it is also useful to consider when and
how a certain onset detector exhibits the best performance,
which constitutes future work.

6.2 Parameter Specifications

For general datasets a low detection sensitivity value is
favourable, which is supported by the fact that 30 out of
the 45 tested methods yield the best performances with a
sensitivity lower than 50% (see online). In 23 out of all
cases, the value of the backtracking threshold was the high-
est considered in our study (2.4) when the detectors yield
the best performances for the combined dataset, and it was
unanimously at a high value for all other datasets including
the percussive ones. This suggests that in many cases, the
perceived onset will be better characterised by the valley of
the detection function prior to the detected peak. Note that
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Figure 2. Performances of CDSF-1 onset detector under
different w (labelled in each curve) and threshold (anno-
tated in the side box) settings

even at a higher threshold, the onset location would not be
traced back further than the valley preceding the peak de-
tected in our algorithm. An interesting direction for future
work would thus be, given this observation, to take into
account the properties of human perception.

Adaptive whitening had to be turned off for the majority
of detectors to provide good performance for all datasets.
This indicates that the method does not improve onset de-
tection performance in general, although it is available in
most onset detectors in the Vamp plugin library. The value
of the tolerance window was always 0.05s for best per-
formance in our study, suggesting that the temporal pre-
cision of the different detectors varies significantly, which
requires a fairly wide decision horizon for successful com-
bination.

Figure 2 shows how two parameters influence the per-
formance of the onset detector CDSF-1. The figure illus-
trates the true positive rate (i.e., correct detections rela-
tive to the number of target onsets) and false positive rate
(i.e., false detections relative to the number of detected on-
sets) and better performance is indicated by the curve shift-
ing upwards and leftwards. All parameters except the lin-
ear combination coefficient (w) and detection sensitivity



(threshold) are fixed at their optimal values. We can ob-
serve that the value of the linear combination coefficient
is around 0.2 for best performance. This suggests that the
detector works the best when taking the majority of the
contribution from SF. With the threshold increasing from
10.0% to 60.0%, the true positive rate is increasing at the
cost of picking more false onsets, thus a lower sensitiv-
ity is preferred in this case. Poorest performance in case
of the linear fusion policy occurs in general when the lin-
ear combination coefficient overly favours one constituent
detector, or the sensitivity (threshold) is too high and the
backtracking threshold (θ) is at its lowest value.

7. CONCLUSION AND FUTURE WORK

In this work, we applied several fusion techniques to aid
the music onset detection task. Different fusion policies
were tested and compared to their constituent methods,
including the state-of-the-art SuperFlux method. A large
scale evaluation was performed on two published datasets
showing improvements as a result of fusion, without extra
computational cost, or the need for a large amount of train-
ing data as in the case of machine learning based methods.
A parameter search was used to find the optimal settings
for each detector to yield the best performance.

We found that some of the best performing configura-
tions do not match the default settings of some previously
published algorithms. This suggests that in some cases,
better performance can be achieved just by finding better
settings which work best overall for a given type of audio
even without changing the algorithms.

In future work, a possible improvement in case of late
decision fusion is to take the magnitude of the peaks into
account when combining detected onsets, essentially treat-
ing the value as an estimation confidence. We will investi-
gate the dependency of the selection of onset detectors on
the type and the quality of the input music signal. We also
intend to carry out more rigorous statistical analyses with
significance tests for the reported results. More parameters
could be included in the search to study their strengths as
well as how they influence each other under different con-
figurations. Another interesting direction is to incorporate
more Non-Western music types as detection target and de-
sign algorithms using instrument specific priors.
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